Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Open Forum Infect Dis ; 10(3): ofad105, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2282389

ABSTRACT

Background: Corticosteroids confer a survival benefit in individuals hospitalized with coronavirus disease 2019 (COVID-19) who require oxygen. This meta-analysis seeks to determine the duration of corticosteroids needed to optimize this mortality benefit. Methods: Electronic databases were searched to 9 March 2022, for studies reporting corticosteroid versus no corticosteroid treatment in hospitalized COVID-19 patients. We estimated the effect of corticosteroids on mortality by random-effects meta-analyses. Subgroup analyses and meta-analyses were conducted to assess the optimal duration of corticosteroid treatment while adjusting for the severity of disease, age, duration of symptoms, and proportion of control group given steroids. Results: We identified 27 eligible studies consisting of 13 404 hospitalized COVID-19 patients. Seven randomized controlled trials and 20 observational studies were included in the meta-analysis of mortality, which suggested a protective association with corticosteroid therapy (risk ratio [RR], 0.71 [95% confidence interval {CI}, .58-.87]). Pooled analysis of 18 studies showed the greatest survival benefit for a treatment duration up to 6 days (RR, 0.54 [95% CI, .39-.74]). Survival benefit was 0.65 (95% CI, .51-.83) up to 7 days, and no additional survival benefit was observed beyond 7 days of treatment (RR, 0.64 [95% CI, .44-.93]). The survival benefit was not confounded by severity of disease, age, duration of symptoms, or proportion of control group given steroids. Conclusions: In this meta-analysis, optimal duration of corticosteroid treatment for hospitalized COVID-19 patients was up to 6 days, with no additional survival benefit with >7 days of treatment.

2.
Front Cardiovasc Med ; 9: 951314, 2022.
Article in English | MEDLINE | ID: covidwho-2029958

ABSTRACT

Background: This study aimed to compare the incidence of myocarditis in COVID-19 vaccines and in severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection groups. Methods: Electronic databases (MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and the WHO Global Literature on Coronavirus Disease) and trial registries were searched up to May 2022, for randomized controlled trials and observational cohort studies reporting the risk of myocarditis associated with the COVID-19 vaccines and the risk associated with SARS-CoV-2 infection. We estimated the effect of COVID-19 infection and vaccines on rates of myocarditis by random-effects meta-analyses using the generic inverse variance method. Meta-regression analyses were conducted to assess the effect of sex and age on the incidence of myocarditis. Results: We identified 22 eligible studies consisting of 55.5 million vaccinated cohorts and 2.5 million in the infection cohort. The median age was 49 years (interquartile range (IQR): 38-56), and 49% (IQR: 43 to 52%) were men. Of patients diagnosed with myocarditis (in both vaccination and COVID-19 cohort) 1.07% were hospitalized and 0.015% died. The relative risk (RR) for myocarditis was more than seven times higher in the infection group than in the vaccination group [RR: 15 (95% CI: 11.09-19.81, infection group] and RR: 2 (95% CI: 1.44-2.65, vaccine group). Of patients who developed myocarditis after receiving the vaccine or having the infection, 61% (IQR: 39-87%) were men. Meta-regression analysis indicated that men and younger populations had a higher risk of myocarditis. A slow decline in the rates of myocarditis was observed as a function of time from vaccination. The risk of bias was low. Conclusion: In this systematic review and meta-analysis, we found that the risk of myocarditis is more than seven fold higher in persons who were infected with the SARS-CoV-2 than in those who received the vaccine. These findings support the continued use of mRNA COVID-19 vaccines among all eligible persons per CDC and WHO recommendations.

3.
BMC Infect Dis ; 22(1): 439, 2022 May 07.
Article in English | MEDLINE | ID: covidwho-1951078

ABSTRACT

BACKGROUND: The temporal evolution of SARS-CoV-2 vaccine efficacy and effectiveness (VE) against infection, symptomatic, and severe COVID-19 is incompletely defined. The temporal evolution of VE could be dependent on age, vaccine types, variants of the virus, and geographic region. We aimed to conduct a systematic review and meta-analysis of the duration of VE against SARS-CoV-2 infection, symptomatic COVID-19 and severe COVID-19. METHODS: MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, the World Health Organization Global Literature on Coronavirus Disease, and CoronaCentral databases were searched and studies were selected. Independent reviewers selected randomized controlled trials and cohort studies with the outcome of interest. Independent reviewers extracted data, and assessed the risk of bias. Meta-analysis was performed with the DerSimonian-Laird random-effects model with Hartung-Knapp-Sidik-Jonkman variance correction. The GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach was used to assess certainty (quality) of the evidence. Primary outcomes included VE as a function of time against SARS-CoV-2 infection, symptomatic and severe COVID-19. RESULTS: Eighteen studies were included representing nearly 7 million individuals. VE against all SARS-CoV-2 infections declined from 83% in the first month after completion of the original vaccination series to 22% at 5 months or longer. Similarly, VE against symptomatic COVID-19 declined from 94% in the first month after vaccination to 64% by the fourth month. VE against severe COVID-19 for all ages was high overall, with the level being 90% (95% CI, 87-92%) at five months or longer after being fully vaccinated. VE against severe COVID-19 was lower in individuals ≥ 65 years and those who received Ad26.COV2.S. CONCLUSIONS: VE against SARS-CoV-2 infection and symptomatic COVID-19 waned over time but protection remained high against severe COVID-19. These data can be used to inform public health decisions around the need for booster vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , SARS-CoV-2 , Vaccine Efficacy
SELECTION OF CITATIONS
SEARCH DETAIL